

Código:	
Vigencia:	20/04/2020
Versión:	1

Nombre completo del estudiante			Grupo	11°
PREGUNTA PROBLEMATIZADORA:				
¿Cómo hacer para que lo que estás estudiando cobre sentido en nuestra vida en estos momentos?				
ÁMBITOS CONCEPTUALES	DÍA	ÁREA		
Límites indeterminados (4 casos).	7 DE SEP	MATEMÁTICAS		
Rectas secantes y pendiente de una				
recta y recta tangente.				
EXPLORACIÓN				

EXPLORACIÓN Actividades previas

QUÉ PARTE

Actividad 1.

- 1. Teniendo en cuenta tu proyecto de vida, ¿cómo la realidad en la que vives hace que tu vida cobre sentido?
- 2. Realiza una reflexión de lo que para ti significa la imagen.
- 3. Menciona 4 situaciones importantes donde se evidencie lo que estás haciendo para mejorar tu realidad.

ESTRUCTURACIÓN

Actividades de construcción conceptual

MOMENTO PARA APRENDER:

Indeterminaciones en el cálculo de límites de funciones.

Una indeterminación o indeterminada es una operación cuyo resultado no está definido. Es habitual obtener este tipo de expresiones al intentar resolver límites, ya sean en un punto o en el infinito. La obtención de una indeterminación no significa que el límite no exista, sino que habrá que buscar otro camino para obtener su resultado. En este apartado vamos a enseñarte las formas habituales en que puedes enfrentarte a los distintos tipos de indeterminaciones.

Tipos de indeterminación

Las principales indeterminaciones que te encontrarás resolviendo límites son las siguientes: k/0, 0/0, ∞/∞ , $\infty-\infty$, $\infty\cdot0$, 1∞ , 0∞ , $\infty0$ y 00.

A continuación, tienes el cuadro resumen con las técnicas habituales a aplicar en cada caso

1. Resolución de K/0

Para resolver una indeterminación del tipo k/0 calculamos los límites laterales. Estos serán ∞ o $-\infty$ según la relación entre k y 0. Por otro lado, este tipo de indeterminación marca la existencia de una asíntota vertical.

Ejemplo

Código:	
Vigencia:	20/04/2020
Versión:	1

$$\lim_{x \to 0} \frac{1}{x} = \left[\frac{1}{0}\right] IND$$

Apliquemos límites laterales:

$$\lim_{x \to 0^+} \frac{1}{x} = \lim_{x \to 0^+} \frac{1}{0^+} \underset{[0^+ = 0.00001]}{=} \infty$$

$$\lim_{x \to 0^-} \frac{1}{x} = \lim_{x \to 0^-} \frac{1}{0^-} \underset{[0^+ = -0.00001]}{=} -\infty$$

como los límites laterales son distintos, estrictamente hablando no existe el límite de la función cuando x tiende a 0:

$$\lim_{x \to 0^+} \frac{1}{x} \neq \lim_{x \to 0^-} \frac{1}{x} \Rightarrow \not \equiv \lim_{x \to 0} \frac{1}{x}$$

2. Resolución de 0/0

Para resolver la indeterminación de tipo 0/0:

- •Si estamos ante un cociente de polinomios, factorizamos y simplificamos el factor común de numerador y denominador y resolvemos el nuevo límite
- •Si estamos ante un cociente con raíces, ya sea en el numerador, en el denominador, o en ambos, multiplicamos numerador y denominador por el/los conjugados y resolvemos. Es muy importante que recuerdes que "suma por diferencia es igual a diferencia de cuadrados"

Ejemplo

$$\lim_{x\to 2}\frac{x^2-4}{x-2}=\left[\frac{0}{0}\right]\text{IND}$$

Como se trata de dos polinomios, podemos factorizarlos para simplificar el factor común. Un posible método para hacerlo es percatarte que en el numerador tienes una diferencia de cuadrados: x²-4 = x²-2², y recordar que suma por diferencia es igual, precisamente, a diferencia de cuadrados, con lo que:

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x + 2) \cdot (x - 2)}{x - 2} = 4$$

Resolución de ∞/∞

Ya sabemos que no todas las funciones que se acercan al infinito (o al menos infinito) lo hacen a igual velocidad. Dicho de otra manera, no todos los infinitos tienen igual grado. Es precisamente por eso que:

Para resolver una indeterminación del tipo ∞/∞ comparamos los grados de los infinitos del numerador y del denominador:

Código:	
Vigencia:	20/04/2020
Versión:	1

- •Si el grado del numerador es mayor que el grado del denominador, el límite es infinito o menos infinito, según la relación de signos entre los términos de mayor grado del numerador y del denominador.
- •Si el grado del denominador es mayor que el grado del denominador, el límite es cero.
- •Si el grado del numerador es igual al grado del denominador, el resultado es un valor finito que depende de los términos de mayor grado del numerador y del denominador.

Cuando en el numerador y en el denominador hay dos polinomios dividiremos ambos por *x* elevado a la potencia mayor del polinomio de menor grado. Así, observa:

$$\lim_{x\to\infty} \frac{x^3 + 2x}{3x^2 + x - 5} = \left[\frac{\infty}{\infty}\right] \text{ IND}$$

Por comparación de infinitos, el resultado debería ser infinito (el polinomio del numerador es de grado 3 y el del denominador de grado 2). Veamos qué ocurre si dividimos numerador y denominador entre x elevado a la mayor potencia del polinomio de menor grado (esto es, entre x^2):

$$\lim_{x \to \infty} \frac{x^3 + 2x}{3x^2 + x - 5} = \lim_{x \to \infty} \frac{\frac{x^3 + 2x}{x^2}}{\frac{3x^2 + x - 5}{x^2}} = \lim_{x \to \infty} \frac{\frac{x^3}{x^2} + \frac{2x}{x^2}}{\frac{3x^2}{x^2} + \frac{x}{x^2} - \frac{5}{x^2}} = \lim_{x \to \infty} \frac{x + \frac{2}{x}}{3 + \frac{1}{x} - \frac{5}{x^2}} = \lim_{x \to \infty} \frac{x + \frac{2}{x}}{3 + \frac{1}{x} - \frac{5}{x^2}} = \lim_{x \to \infty} \frac{x + \frac{2}{x}}{3 + \frac{1}{x} - \frac{5}{x^2}} = \infty$$

4. Resolución de ∞ - ∞

Por la misma razón que no podemos decir que ∞/∞ sea 1, tampoco podemos decir que $\infty-\infty$ sea 0: Cada función que da origen a dicho infinito puede acercarse a él a distinta velocidad (es decir, cada infinito puede tener un grado distinto). Podemos decir que:

Para resolver una indeterminación del tipo ∞ - ∞ podemos proceder de las siguientes formas:

- Por comparación de infinitos, cuando podemos apreciar a simple vista el grado de los infinitos
- •Operando la diferencia que origina la indeterminación y calculando después el límite que quede
- Cuando hay raíces se debe multiplicar y dividir por el conjugado para hacer desaparecer la raíz que dificulta el cálculo del límite

Ejemplo

Código:	
Vigencia:	20/04/2020
Versión:	1

$$\lim_{x \to \infty} \frac{x^2}{x+2} - x = [\infty - \infty] \text{ IND } \Rightarrow$$

$$\lim_{x \to \infty} \frac{x^2}{x+2} - x = \lim_{x \to \infty} \frac{x^2 - x \cdot (x+2)}{x+2} = \lim_{x \to \infty} \frac{-2x}{x+2} = \left[\frac{-\infty}{\infty}\right] \text{IND}$$

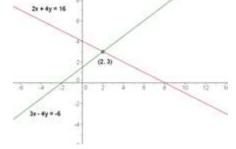
$$\lim_{x \to \infty} \frac{x^2}{x+2} = \lim_{x \to \infty} \frac{-2x}{x+2} = \lim_{x \to \infty} \frac{-2x}{x+2} = \lim_{x \to \infty} 2$$

Geoestadística

1. Rectas secantes

Dos rectas en el plano son secantes si se cortan en un solo punto.

Dos rectas son secantes si los coeficientes de x e y respectivos no son proporcionales.



Dos rectas son secantes si tienen distinta pendiente.

m ≠ m'

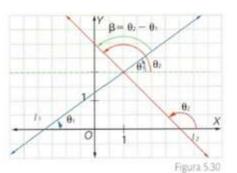
1.1. Ángulo entre dos rectas secantes

Dos rectas secantes forman ángulos al intersecarse. En la Figura 5.30 se representan las rectas secantes l_1 y l_2 con ángulos de inclinación θ_1 y θ_2 , respectivamente. Si β es el ángulo que forman las dos rectas, entonces $\beta = \theta_2 - \theta_1$. Además, como tan $\theta_1 = m_1$ y tan $\theta_2 = m_2$, se cumple que:

$$\tan\beta = \tan\left(\theta_2 - \theta_1\right) = \frac{\tan\theta_2 - \tan\theta_1}{1 + \tan\theta_2 \cdot \tan\theta_1} = \frac{m_2 - m_1}{1 + m_2 \cdot m_1}$$

Por lo tanto, el ángulo β formado por las rectas l_1 y l_2 cuyas pendientes son m_2 y m_3 , respectivamente, corresponde a:

$$\beta = \tan^{-1} \left(\frac{m_2 - m_1}{1 + m_2 \cdot m_1} \right)$$



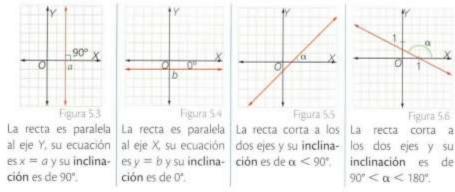
1.2. Rectas perpendiculares

Código:	
Vigencia:	20/04/2020
Versión:	1

Dos rectas secantes l_1 y l_2 son **perpendiculares** si el producto de sus pendientes m_1 y m_2 , respectivamente, es -1. Es decir, si $m_1 \cdot m_2 = -1$.

Inclinación y pendiente

al representar una recta en el plano cartesiano se pueden dar varios casos.



La Pendiente de una recta indica la variación entre los incrementos en el eje Y respecto de los incrementos en el eje X. si se toman dos puntos

 (x_1, y_1) y (x_2, y_2) pertenecientes a una recta, la pendiente (m) es la razón de cambio entre el desplazamiento vertical respecto del desplazamiento horizontal y está dada por:

$$pendiente = \frac{desplazamiento\ vertical}{desplazamiento\ horizontal}$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Además, para cualquier par de puntos se forma un triángulo rectángulo, donde la razón entre los catetos está relacionada con el **ángulo de inclinación** de la recta.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{cateto opuesto a } \beta}{\text{cateto advacente a } \beta} = \tan \beta$$

Es decir que $m=\tan \beta$; por lo tanto, para hallar el ángulo se tiene que $\beta=\tan^{-1}m$.

TRANSFERENCIA Actividades de aplicación

MOMENTO PARA PRACTICAR

Actividad 2

1. Identifica a cuál indeterminación corresponde y luego resuelve

a.
$$\lim_{x \to 3} \frac{3}{(x-3)^2}$$

b.
$$\lim_{x \to 1} \frac{x-1}{x^2 - 2x + 1}$$

Código:	
Vigencia:	20/04/2020
Versión:	1

2. Identifica a cuál indeterminación corresponde y luego resuelve

a.
$$\lim_{x \to +\infty} \frac{5x^2 + 3x + 2}{2x^2 - 4x + 8}$$

b.
$$\lim_{x \to 2} \frac{x^2 - 2}{x(x - 2)} - \frac{1}{x - 2}$$

Geoestadística

- 1. Consulta sobre la recta tangente y la pendiente de una recta tangente.
- 2. Compruebas que las rectas son secantes

a. R:
$$x + y - 2 = 0$$
 y la recta S: $x - 2y + 4 = 0$

b. O:
$$4x - y + 5 = 0$$
 y la recta P: $6x - 2y - 1 = 0$

3. Determina las pendientes de las rectas que pasan por cada par de puntos

a.
$$A(0, -2)$$
 y $B(-3, -2)$ **b.** $A(1, 4)$ y $B(-2, 1)$ **c.** $A(1, -2)$ y $B(-2, 3)$ **d.** $A(0, 6)$ y $B(0, 0)$

EVIDENCIA EVALUATIVA		
FECHA DE REVISIÓN: 21 DE SEPTIEMBRE		
MEDIO POR EL CUAL SE RECIBE EL TRABAJO	QUE RECIBIR	
Plataforma de Edmodo	Documento de Word que contiene las fotos de las actividades	
Correo electrónico: angela@iefelixdebedoutmoreno.edu.co	desarrolladas en el cuaderno.	
HORARIO DE ATENCIÓN: 2:00 A 4:00 PM	Recuerda presentar de manera organizada todo el trabajo.	

BIBLIOGRAFÍA

https://www.fisicalab.com/apartado/indeterminaciones#tipos

https://www.superprof.es/apuntes/escolar/matematicas/calculo/funciones/indeterminacion-infinito-partido-infinito-2.html https://www.superprof.es/diccionario/matematicas/geometria/rectas-secantes.html

Matemáticas 10 Vamos a aprender Matemáticas 11 Vamos a aprender